\qquad ID: \qquad

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set 2

Semester/Year: 2/2015
Course Title: Basic Electrical Engineering
Instructor: Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: Feb 1, 5 PM

Instructions

1. Solve all problems. (5 pt)
a. Write your name and ID on the top of every submitted page.
b. For each part, write your explanation/derivation and answer in the space provided.
2. ONE sub-question will be graded (5 pt). Of course, you do not know which part will be selected; so you should work carefully on all of them.
3. There is no need to submit (or even print out) page 1 (this cover sheet).
4. Late submission will be rejected.
5. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
\qquad ID: \qquad

Questions

1) [Alexander and Sadiku, 2009, PP2.2] For the circuit shown in Figure 1, calculate the voltage v and the power p (dissipated by the $10 \mathrm{k} \Omega$ resistor).

The 2 mA current source forces clockwise 2 mA current through the circuit (which is simply one loop and hence, by KCL, we have the same 2 mA current flowing through the loop).

The arrow of i agrees with the clockwise direction of the forced $2 m A$ Hence, $i=2 \mathrm{~mA}$.

$$
\text { (not }-2 m A \text {) }
$$

2) [Alexander and Sadiku, 2009, Q2.4]

Figure 1
Figure 1
a) Calculate current i in Figure 2 when the switch is in position 1.

Because the switch is in position 1, all the current i flows in the CCW direction through the left half of the circuit. we define a voltage v across the resistor.
Because the 19 V voltage source is connected directly

Here, $i=2 \mathrm{~mA}$ and $R=10 \mathrm{k} \Omega$.
Therefore,

$$
\begin{aligned}
& v=i R=2 \mathrm{~mA} \times 10 \mathrm{k} \Omega=20 \mathrm{~V} \\
& \text { and } \\
& p=i v=2 \mathrm{~mA} \times 20 \mathrm{~V}=40 \mathrm{~mW}
\end{aligned}
$$

across v and their polarities $(t,-)$ Figure 2 match. We have $v=15 \mathrm{~V}$.
b) Find the current when the switch is in position 2.

\qquad ID: \qquad same as node (5)
3) [Alexander and Sadiku, 2009, Q2.7] Find the number of brafrehes and nodes in each of the circuits of Figure 3.

Figure 3
b branches $=6$

$$
x \text { nodes }=5
$$

4) [Alexander and Sadiku, 2009, Q2.10] Determine i_{1} and i_{2} in the circuit of Figure 4.

Applying KCL at this node, we have

$$
\begin{aligned}
4+\left(-i_{1}\right)+3 & =0 \\
i_{1} & =7 \mathrm{~A}
\end{aligned}
$$

\qquad ID: \qquad
5) [Alexander and Sadiku, 2009, Q2.14] Given the circuit in Figure 5, use KVL to find the branch voltages V_{1} to V_{4}. As hinted, we need to apply $K L V$. $(\Sigma v=0)$ Because there are four unknowns. we need at least 4 loops.

Figure 5
We will try to start with a loop that involves minimum of unknown variables

So, we start with" loop 1":

Because we already know V_{4}, "loop 2 " now has only one unknown variable $\left(v_{3}\right)$:

$$
\begin{aligned}
&\left(v_{3}\right)-\neq V \\
&-4-v_{3}-v_{4}=0 \\
& v_{3}=-4-v_{4}=-11 \mathrm{~V}
\end{aligned}
$$

Similarly, when we know v_{3}, "loop 3 " has only one unknown variable $\left(V_{1}\right)$:

$$
\begin{aligned}
& +3-V_{1}+v_{3}=0 \\
& v_{1}-11 \mathrm{~V} \\
& v_{1}=3-11=-8 \mathrm{~V}
\end{aligned}
$$

Finally, from "loop 4 ":

$$
\begin{aligned}
+v_{1}^{-8 v}+v_{2}+2 & =0 \\
v_{2} & =8-2=6 v
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=-8 v \\
& v_{2}=6 \mathrm{~V} \\
& v_{3}=-11 \mathrm{~V} \\
& v_{4}=7 \mathrm{~V}
\end{aligned}
$$

